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CONVECTION IN ROTATING STARS: CONVECTIVE PENETRATION AND MIXING

K. C. Augustson1 and S. Mathis1

Abstract. This poster examined a model for rotating convection in stars and planets. The convection
model is used as a boundary condition for a first-order expansion of the equations of motion in the transition
region between convectively unstable and stably-stratified regions, estimating the depth of convective pen-
etration into the stable region and establishing a relationship between that depth and the local convective
Rossby number. Several models for the mixing in such a region were considered.
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1 Introduction

Convective flows cause mixing not only in regions of superadiabatic temperature gradients but in neighboring
subadiabatic regions as well, as motions from the convective region contain sufficient inertia to extend into
those regions before being braked buoyantly or eroded turbulently (e.g., Miesch 2005; Lecoanet et al. 2015;
Viallet et al. 2015). This convective penetration and turbulence can thus alter the chemical composition and
thermodynamic properties in those regions (e.g., Zahn 1991; Augustson et al. 2016; Pratt et al. 2017a). One such
convection model has been described in Paper I (Augustson & Mathis 2019). The motivation for taking rotation
into account in this model was the numerical work of Käpylä et al. (2005) and Barker et al. (2014), who found
that the rotational scaling of the amplitude of the temperature, its gradient, and the velocity field compared well
with those derived by Stevenson (1979). Moreover, the analysis by Howard (1963) showed that a principle of
heat-flux maximization provided a sound basis for the description of Rayleigh–Bénard convection, triggering its
use here. Thus, two hypotheses underlie the convection model: the Malkus conjecture that convection arranges
itself to maximize the heat flux, and that the nonlinear velocity field can be characterised by the dispersion
relationship of the linearised dynamics. Constructing the model of rotating convection then consists of three
steps: first, to derive a dispersion relationship that links the normalized growth rate ŝ = s/N∗ to q = N∗,0/N∗,
which is the ratio of superadiabaticity of the nonrotating case to that of the rotating case, where N2

∗ = |gαTβ|
is the absolute value of the square of the Brunt-Väisälä frequency, g is the magnitude of the gravity, αT is
the coefficient of thermal expansion, and β is the temperature gradient. The next is to apply the normalized
wavevector ξ3 = k2/k2

z (where kz = π/l, with l being the depth of the convective layer) to maximize the heat
flux with respect to ξ. The last is to assume an invariant maximum heat flux that closes this three-variable
system.

To that end, a local region was considered, as in Paper I, where a small 3D section of the spherical geometry
was the focus of the analysis. As shown in figure 1 of that Paper, this region covers a portion of both convectively
stable and unstable zones, where the setup is configured for a low-mass star with an external convective envelope.
Those regions may be exchanged when considering an early-type star with a convective core. In this local frame,
there is an angle between the effective gravity geff and the local rotation vector that is equivalent to the co-
latitude, θ. The Cartesian coordinates are defined such that the vertical direction z is anti-aligned with the
gravity vector, the horizontal direction y lies in the meridional plane and points toward the north pole defined
by the rotation vector, and the horizontal direction x is equivalent to the azimuthal direction. The assumption
of this convection model is that the magnitude of the velocity is defined as the ratio of the maximizing growth
rate and wavevector. With that approximation, the velocity amplitude can be defined relative to the case of
nondiffusive and nonrotating scales without a loss of generality, as
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Only the maximising wavevector therefore needs to be determined in order to ascertain the relative velocity
amplitude. From all those equations, the horizontal wavevector may be seen to be roots of the fourteenth-order
polynomial:
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where V0 and K0 are the non-dimensional diffusivities and s̃ is a numerical factor. To ascertain the maximising
wavenumber, and thus the velocity, of the motions that maximise the heat flux, one therefore supplies the
co-latitude, θ, and the convective Rossby number of the flow, Roc.

Once the quantities relating to the convection model have been defined, the impact of rotation on the
convective penetration can be characterised. Following Paper I, we determined that the depth of convective
penetration scaled as LP /LP,0 = (v/v0)3/2. Then, considering the extreme-value models of penetration devel-
oped by Pratt et al. (2017b), one can improve the initial estimate of Baraffe et al. (2017). Using the above
extension of the Zahn (1991) model, one could then estimate both the penetration depth and the level of diffu-
sive turbulent mixing. Taking the parameters of the Gumbel distribution as in Pratt et al. (2017a) yields the
following description of the radial dependence of the diffusion: coefficient
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where rc is the base of the convection zone and µ = 5× 10−3 and λ = 6× 10−3 are the empirically determined
parameters from Baraffe et al. (2017). Likewise, following the analysis of Korre et al. (2019), one can find that
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where S is the stiffness of the stable interface, Ra0 is the Rayleigh number, Pr is the Prandtl number, and E0 is
the energy in the nonrotating convection. These models have now to be implemented in stellar evolution codes
(Michielsen et al. 2019), and to be assessed with seismic constraints and the observed surface abundances.
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